
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 67.184.224.59

This content was downloaded on 04/11/2014 at 17:32

Please note that terms and conditions apply.

CMS multicore scheduling strategy

View the table of contents for this issue, or go to the journal homepage for more

2014 J. Phys.: Conf. Ser. 513 032074

(http://iopscience.iop.org/1742-6596/513/3/032074)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/513/3
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


CMS multicore scheduling strategy

Antonio Pérez-Calero Yzquierdo1,2, Jose Hernández2, Burt Holzman3,
Krista Majewski3 and Alison McCrea4 for the CMS Collaboration.
1 Port d’Informació Cient́ıfica (PIC), Universitat Autónoma de Barcelona, Bellaterra
(Barcelona), Spain.
2 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, Madrid,
Spain.
3 Fermi National Accelerator Laboratory, USA.
4 University of California San Diego, USA.

E-mail: aperez@pic.es

Abstract. In the next years, processor architectures based on much larger numbers of cores
will be most likely the model to continue ”Moore’s Law” style throughput gains. This not
only results in many more jobs in parallel running the LHC Run 1 era monolithic applications,
but also the memory requirements of these processes push the workernode architectures to
the limit. One solution is parallelizing the application itself, through forking and memory
sharing or through threaded frameworks. CMS is following all of these approaches and has
a comprehensive strategy to schedule multicore jobs on the GRID based on the glideinWMS
submission infrastructure. The main component of the scheduling strategy, a pilot-based model
with dynamic partitioning of resources that allows the transition to multicore or whole-node
scheduling without disallowing the use of single-core jobs, is described. This contribution also
presents the experiences made with the proposed multicore scheduling schema and gives an
outlook of further developments working towards the restart of the LHC in 2015.

1. Introduction: going multicore
The motivation for the development of multicore software by the CMS collaboration is twofold.
Firstly, it is inspired by the evolution of computer hardware, as over the last decade single-core
CPU capabilities have been pushed to its limitations. The evolution of processor architecture
has been such that in order to improve the overall CPU performance, its design has moved to
adding more processor units to the CPU (cores), while the individual core performance has not
increased significantly.

Secondly, the future evolution of LHC running conditions is to be considered. Higher energy
and luminosity during LHC Run 2 implies that increasing data volumes will need to be processed
by the experiments. Additionally, increasing event complexity, due to a higher pileup, will
result in higher processing time per event and more intensive memory usage, as compared to
the conditions during LHC Run 1.

Multicore applications present several advantages in this environment, as they aim at fully
exploiting multicore CPU capabilities adapting the code to new architecture designs. Processing
events in a threaded way also reduces memory consumption per core, which avoids running into
memory limitations, as memory is shared between threads. Further advantages come from the
experiment’s Workload Management System (WMS), as the number of jobs to be handled by the

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032074 doi:10.1088/1742-6596/513/3/032074

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



system is reduced and output files of larger size are produced, which then require less managing
and merging operations.

Adapting LHC experiments computing to use multicore CPUs requires software modifications
at the level of the application itself but also in the scheduling tools, both grid-wide and at the
site level. These software modifications represent a transition to a new era for High Energy
Physics computing, from sequential programming to parallel processing. The integration of
elements from two domains that have evolved separately, Grid Computing and High Performance
Computing, constitutes in a way a new paradigm of distributed parallel computing (see, for
instance, [1]). This software evolution will happen in parallel to the upgrades of the LHC and
the upgrade of the detectors, all needed to continue pushing the boundaries of High Energy
Physics in the coming years.

This document is organized as follows: section 2 describes the strategy being developed for
CMS multicore application and job scheduling. The approach to simultaneous scheduling of
single core and multicore jobs has been tested in a controlled environment. The results of
this experience are summarized in section 3. Finally, section 4 presents the conclusions from
this study and the outlook for future developments towards the implementation by CMS of an
efficient multicore software solution by the restart of the LHC in 2015.

2. CMS strategy for multicore jobs
The CMS collaboration is exploring ideas for new data processing software at different levels
of parallelization. In a first approach, processing of different events can be simultaneously run
in parallel processes. In a deeper level, data modules inside an event can also be processed
in parallel. Finally, both ideas may be combined, as parallel processing of data modules, not
necessarily from the same event, may be performed simultaneously. Parallel threads share
common data in memory, such as detector geometry, conditions data, etc. Even parallelization
at event level implemented as forked subprocesses has been shown to provide promising results,
with a remarkable reduction in memory usage (25-40%), for a small CPU inefficiency, mainly due
to merging of the output files [2]. Further details of each approach, as well as the development
status of these efforts can be found in [3]. A first version of a multithreaded application to be
used by CMS for production-size tests is expected to be ready by the end of 2013.

Multicore jobs will be intensively used in the near future, thus CMS needs to develop
scheduling strategies to handle them. However, single core programs will likely still be used
within CMS computing, mainly for analysis jobs. Therefore, a successful strategy must include
the integration of both multicore and single core jobs scheduling. Scheduling strategies must
also aim at minimizing idle CPU time, reducing any inefficiencies introduced by the scheduling
infrastructure. An intensively automated scheduling system would require minimal human
intervention to manage computing work-flows, hence reducing the need for dedicated manpower.
Job scheduling must also provide tools for status monitoring to be used by system operators.
Finally, it must allow proper accounting of used resources and the implementation of priority
policies for different types of jobs, privileged user groups, etc.

A successful scheduling strategy must also take into account the grid sites’ preferences.
Many of the data centers supporting CMS computing share their resources with other Virtual
Organizations (VOs). CMS scheduling system should not force splitting sites’ resources by
imposing requirements such as dedicated queues or whole-node batch slots, as they would
introduce inefficiency and additional complexity in resources configuration and management.

The CMS workload management infrastructure is currently built on glideinWMS [4, 5], a
grid-wide batch system, derived from HTCondor [6]. The key concept of this system is the use
of the so called pilot jobs to schedule user jobs in a pull mode. Pilots jobs are sent to all grid sites
matching job resources request, entering the queues at the local batch systems. If resources are
allocated at one or several grid sites, the set of running pilots define a virtual pool of computing

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032074 doi:10.1088/1742-6596/513/3/032074

2



Figure 1. Current CMS WMS based on single core pilots (left) and the proposed multicore
pilot strategy (right). See text for detailed description.

resources. The grid-wide WMS then manages user jobs, assigning them to the first pilot that
makes them run. Further details of the use by CMS of such a model for computing workload
management can be found in [7, 8].

The current scheduling model and its proposed evolution are shown in Fig.1. Workflows are
currently managed by pilots which request a single slot in the local batch systems, corresponding
to a single core in a workernode (WN). These pilots then pull single core jobs, allocating one user
job per WN core (Fig.1, left). This model does not make any use of the multicore capabilities
of the hardware where it is made to run.

In contrast, multicore pilots are designed to control several batch slots. Previous tests for
the allocation of multicore jobs used pilots taking dedicated whole-node slots [2]. This system
performed correctly but, as previously discussed, is not the model preferred by sites as it forces
them to split their resources into specialized queues. The new schema is based on multi-slot
pilot jobs featuring a dynamic partitioning of the allocated resources. Pilots take N slots from
the local batch system and then arrange M internal slots according to user job’s requirements.
In the example shown in Fig.1, right, a single pilot managing 4 cores in a WN has split its
resources in such way that it can pull a job requesting 2 cores plus 2 additional single core jobs.
This model thus satisfies the condition of being able to manage single core and multicore jobs
simultaneously. Multicore pilots are required to run multicore applications, but even its use to
schedule single core jobs is advantageous, as the number of pilots required to manage the whole
experiment workload can be greatly reduced.

The use of multicore pilots is supported by batch system configurations commonly found in
CMS grid sites, assigning one batch slot to one WN core.

3. Testing the proposed scheduling strategy
The scheduling strategy described in the previous section needs to be implemented and tested.
For that purpose, a testbed infrastructure equivalent to that used for CMS production jobs has
been setup at CERN, based on glideinWMS 2.7 and HTCondor 7.8.6. Jobs have been sent
to remote resources located at PIC, the Spanish Tier-1 grid site supporting CMS, ATLAS and
LHCb experiments. Local components include CREAM Computing Element as grid middleware,
Torque/Maui as local batch system and scheduler, as well as two 8-core WNs running Scientific
Linux 6 and configured as 8 batch slots per machine, i.e. one slot per CPU core, for a total of
16 job slots.

The objective of the experience is to verify the technical capabilities of such a setup
with respect to handling single and multicore jobs simultaneously and to identify potential
inefficiencies in CPU usage intrinsic to the job allocation machinery itself, not the running
application. For this reason, jobs running an application 100% efficient in CPU usage were

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032074 doi:10.1088/1742-6596/513/3/032074

3



Figure 2. CPU usage (%) versus time in an example of the stress command loading an 8-core
CPU up to 100% for 1000 s.

Figure 3. Pilot jobs taking multiple slots from the local batch system. Four running pilots
jobs have been assigned 4 batch slots each.

employed. These jobs executed the stress command [9], causing CPU loads by means of
performing square root calculations of random numbers for a given time interval. As an example,
the command

stress --cpu 8 --timeout 1000s

generates 8 stress threads saturating the CPU of one of the 8-core WNs in the test environment
for 1000 seconds, see Fig.2. In order to test the scheduling strategy via multicore pilots, test
jobs were set to require 1, 2 and 4 CPU cores, executing stress threads to load the corresponding
number of cores to 100% usage.

It is not in the scope of this study to reproduce a realistic situation of a typical grid site,
with a much larger pool of resources being accessed simultaneously by multiple VOs, each of
them sending jobs with different requirements. Such complexity was simulated in a study by
ATLAS [10], which describes different dynamic regimes arising from diverse local scheduler
configurations when they are required to accept both single and multicore jobs. This study,
however, does not contemplate our proposal of encapsulating single core jobs into multicore
pilots. This key feature of the CMS model could simplify job scheduling by sending jobs in a
unified way to the local WMS. Its impact on such a realistic scenario is nevertheless still to be
quantified.

Multicore pilots have been tested in 2, 4 and 8 slot configurations. From the point of view of
the local batch system, pilots are just jobs requesting a given number of slots. Figure 3 shows
an example of pilots requesting 4 slots. Each running pilot gets assigned 4 slots on the same
machine, the remaining pilots then wait in the queue.

As the job queue gets populated with jobs of diverse resources requirements, it is essential

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032074 doi:10.1088/1742-6596/513/3/032074

4



Figure 4. Example of a process structure for a pilot managing multiple jobs of different
requirements at the same time.

that pilots can pull different types of jobs and run them simultaneously. The tree of processes
in one of the WNs running the test jobs reveals the structure under the control of the pilot
process. In the example shown in Fig.4, a 4-core pilot has arranged itself into 3 internal uneven
slots, pulling then one 2-core plus 2 single core jobs.

In a first CPU usage efficiency test, see Fig.5, 8-core pilots were employed. Job queue was
filled with a random mixture of 1, 2 and 4 core jobs. Pilots configured themselves internally
according to queue content at their startup. Each pilot arranged initially into 8 1-core slots and
started pulling single core jobs. Pilots ran single core jobs efficiently until none remained in the
queue. Inefficiencies at startup and at job completion were observed (Fig.5(a)). Once single core
jobs were exhausted, 2-core jobs were next to be run. Pilots were unable to pull 2-core jobs in
the initial configuration, however, internal slots in a pilot may claim idle resources, as jobs now
require more cores in order to run. Slots were thus rearranged from 8 1-core to 4 2-core slots.
Some CPU inefficiency was observed during core reallocation to internal slots, as well as at job
completion (Fig.5(b)). Once 2-core jobs were finished, 4-core jobs were next to be run, thus
slots needed to be rearranged once more, from 4 2-core to 2 4-core slots. With the internal slots
reconfigured, 4-core jobs started running and continued until queue was empty. Inefficiencies
during core reallocation to internal slots (once per slot) and at job completion were detected
(Fig.5(c)). Finally, pilots remained in the system for some time, waiting for more possible jobs
to enter the queue.

For the second CPU efficiency test, shown in Fig.6, 8-core pilots were again used. However,
this time the queue was initially filled only with 4-core jobs. The queue content caused each
pilot to configure itself as 2 4-cores slots. These 4-core jobs were executed, running efficiently
until none remained in the queue. Some inefficiency caused by the pilot draining was observed
(see Fig.6(a)), as the last 4-core job was running while the other slot was already empty.

Once pilots were running, single core jobs were added to the queue, being pulled only after 4-
core jobs were exhausted. Initially, as the optimal configuration needed to run 4-core jobs, each
pilot had arranged itself internally into 2 4-core slots. In the current stage of configurable-slot
pilot development, as shown in the previous test, internal slots can absorb idle resources from
free slots. However, they are not able to subdivide themselves at running time. This meant
that each 4-core slot could only pull a single core job instead of four. This caused CPU usage
to drop, as Fig.6(b) clearly shows. Again, CPU inefficiency derived from pilot draining can be
observed.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032074 doi:10.1088/1742-6596/513/3/032074

5



Figure 5. CPU usage (%) versus time for the first scheduling efficiency test. See text for a
detailed description.

Figure 6. CPU usage (%) versus time for second scheduling efficiency test. See text for a
detailed description.

4. Conclusions and timeline for CMS multicore software deployment
As described in the previous sections, CMS multicore scheduling strategy is currently under
development, based on the idea of multicore pilots with dynamic allocation of internal slots.
The principle has been successfully tested, as multicore pilots have been shown to be able to
handle a mixture of single core and multicore jobs. However, several sources of scheduling
inefficiencies have been identified in these tests:

• Not specific to multicore pilots: at the beginning of pilot lifetime and at job completion
once a job is finished, until another job is pulled and starts to run. At the end of pilot
lifetime, when jobs are all finished but pilots remain in the batch system waiting for more
potential jobs to appear.

• Exclusive to multicore pilots: during the internal slot reconfiguration to incorporate idle
resources once the jobs that caused the initial configuration are exhausted from the queue.
Draining inefficiency while finishing long jobs, as pilots are using only a fraction of the
allocated cores.

Additionally, at this stage of software development, pilot internal slots can’t yet be subdivided
into smaller pieces at running time, which is needed in order to adapt pilot internal configuration
to the current queue content. Inefficiency thus arises as jobs are assigned more resources than
they require. Optimal allocation of resources to internal slots must be achieved dynamically,
not only at start-up time. Pilots must rearrange themselves accordingly or be forced to exit the
batch system, so that fresh pilots may start with a new optimal configuration.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032074 doi:10.1088/1742-6596/513/3/032074

6



There is room for improvement in the presented job scheduling strategy regarding CPU
efficiency, both in terms of fine tuning and new features:

• Pilot performance can be controlled through the parameters that define pilot lifetime: the
relation between job duration and total pilot lifetime should be tuned in order to minimize
inefficiencies at job start and completion, draining, etc.

• Further developments and ideas are being considered: pilots could request a range of slots
instead of a fixed number to increase the likelihood for multicore pilots to get the resources
they demand. Also, methods for improved communication between job queue, pilots and
local batch systems are being discussed in an organized WLCG taskforce [11]. Other ideas
include ordering job scheduling according to their expected run time, as scheduling shorter
ones at the end of pilot lifetime would increase the probability of job completion, and the
possibility of pilots returning slots to the local batch system when they are not expected to
be used.

The current timeline for CMS multicore strategy deployment is the following: a first version
of a multi-threaded application is expected to be ready by the end of the year 2013. The new
scheduling schema using multicore pilots should be implemented and tested for production jobs
at large scale during 2014. It will first be used to manage production single core jobs, then
production multicore parallelized jobs. The final objective is to provide CMS computing with
multicore applications and a multicore job scheduling strategy ready for the LHC restart by
2015.

Acknowledgments
The Port dInformació Cient́ıfica (PIC) is maintained through a collaboration between the
Generalitat de Catalunya, CIEMAT, IFAE and the Universitat Autonoma de Barcelona.
This work was supported partly by grants FPA2007-66152-C02-00 and FPA2010-21816-C02-
00 from the Ministerio de Ciencia e Innovación, Spain. Additional support was provided by
the EU 7th Framework Programme INFRA- 2007-1.2.3: e-Science Grid infrastructures Grant
Agreement Number 222667, Enabling Grids for e-Science (EGEE) project and INFRA-2010-
1.2.1: Distributed computing infrastructure Contract Number RI-261323 (EGI-InSPIRE).

References
[1] Elmer P et al 2013, The Need for an R&D and upgrade program for CMS software and computing,

http://arxiv.org/abs/1308.1247

[2] Hernandez J et al 2012, Multi-core processing and scheduling performance in CMS, http://indico.cern.
ch/contributionDisplay.py?contribId=199&sessionId=4&confId=149557

[3] Jones C et al, 2013, Stitched together: transitioning CMS to a hierarchical threaded framework, http:

//indico.cern.ch/contributionDisplay.py?contribId=158&sessionId=3&confId=214784

[4] Sfiligoi I et al 2009, The pilot way to grid resources using glideinWMS, http://dx.doi.org/10.1109/CSIE.
2009.950

[5] GlideinWMS Homepage: http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc.prd/

index.html

[6] HTCondor Homepage: http://research.cs.wisc.edu/htcondor/

[7] Grandi C et al 2013, CMS computing model evolution, https://indico.cern.ch/contributionDisplay.

py?contribId=102&sessionId=5&confId=214784

[8] Sfiligoi I, 2013, CMS experience of running glideinWMS in high availability mode, https://indico.cern.
ch/contributionDisplay.py?contribId=114&sessionId=9&confId=214784

[9] Stress command: http://linux.die.net/man/1/stress

[10] Crooks D et al 2012, Multi-core job submission and grid resource scheduling for ATLAS AthenaMP, J. Phys.:
Conf. Ser. 396 032115 doi:10.1088/1742-6596/396/3/032115.

[11] WLCG Machine/Job Features task force, 2013, https://twiki.cern.ch/twiki/bin/view/LCG/

MachineJobFeatures

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032074 doi:10.1088/1742-6596/513/3/032074

7

http://arxiv.org/abs/1308.1247
http://indico.cern.ch/contributionDisplay.py?contribId=199&sessionId=4&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=199&sessionId=4&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=158&sessionId=3&confId=214784
http://indico.cern.ch/contributionDisplay.py?contribId=158&sessionId=3&confId=214784
http://dx.doi.org/10.1109/CSIE.2009.950
http://dx.doi.org/10.1109/CSIE.2009.950
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc.prd/index.html
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc.prd/index.html
http://research.cs.wisc.edu/htcondor/
https://indico.cern.ch/contributionDisplay.py?contribId=102&sessionId=5&confId=214784
https://indico.cern.ch/contributionDisplay.py?contribId=102&sessionId=5&confId=214784
https://indico.cern.ch/contributionDisplay.py?contribId=114&sessionId=9&confId=214784
https://indico.cern.ch/contributionDisplay.py?contribId=114&sessionId=9&confId=214784
http://linux.die.net/man/1/stress
https://twiki.cern.ch/twiki/bin/view/LCG/MachineJobFeatures
https://twiki.cern.ch/twiki/bin/view/LCG/MachineJobFeatures



